Flat Band Structures

Presentation Given By Silas Goodman

Condensed Matter Physics at OU In Collaboration with Dr. Bruno Uchoa

What are Flat Bands

- Flat bands are states in which energy is independent of momentum.
 - Group velocity is zero
- Generally unstable
 - Susceptible to perturbations
- Leads to phenomena such as ferromagnetism, superconductivity, and superfluidity as seen in CuO2

Lattices

Occured in twisted bilayer graphene

- Attempts to make flat band lattices have Used origami rules and fractals
- The edge states are different from the bulk Ο
 - Chiral edge states

Crystal Lattice and Unit Cell

Unit Cell

Crystal Lattice

Relation to Anomalous Quantum Hall Effect

- The Original Quantum Hall Effect was shown using a magnetic field
 - First example of a topological insulator
 - Conductivity was quantized σ = C
 (e²/h)
 - C here is the chern number, dependent on the topology of the band structure
- The AQHE was demonstrated without the use of an external magnetic field
 - Due to spin-orbit coupling (SOC)

What I Will Be Researching

Berry Connections and Berry Curvature

Calculations on

- The Chern number using the Berry curvatures of different materials
- Hall conductivity
- Polarization using the Berry phase
- Orbital Magnetization using Wannier functions

□ All these relate to topology

Berry's Connection

 $A_n(R) = i < n(R) |\nabla_R| n(R) >$

Berry's Curvature

 $'B' = \nabla_R \times A_n(R)$

• Berry's Phase $\gamma_n(T) = i \oint A_n(R).dR$

$$\begin{split} \Phi &= \int_{S} B.da \\ B &= \nabla \times A \\ \Phi &= \int_{S} (\nabla \times A).da = \oint_{C} A.dr \\ \gamma_{n}(T) &= i \oint < \psi_{n} |\nabla_{R}\psi_{n} > dR \end{split}$$

Significance of Topological Flat Bands

- Would significantly improve topological quantum computing
 - Information is encoded differently from qubits through anyons
 - Improved coherence times
- Studying correlation electron physics
 - o e.g. Mott insulators

w.ct.pmd.edu/class/spring2618/cmsc457/report/Topological Turama

Crystal Lattice — Structure & Formation - Expii

https://www.slideserve.com/michaelbrooks/chapter-18-electrical-propertiespowerpoint-ppt-presentation

<u>1308.0343</u>

Observation of topological surface state quantum Hall effect in an intrinsic threedimensional topological insulator